Cadence 之计算器

Cadence 的计算器可是个好东西,能帮助我们分析结果。计算器可以从仿真得出的数据,进行计算,从而得到我们想要的东西。

一、 计算波形的频率

如果我们得到一个周期的波形,想知道这个波形的频率,一般是看波形图,然后去计算。现在用计算器,直接可以得到频率。

如下电路图:

输入是一个周期为 2ns 的方波,也就是频率为 500M。 通过 spectre 的 tran 仿真。得到输入和输出的波形图。

当然可以从图中去读出数据,然后得到周期,就得到了频率。 下面介绍用计算器。

选择 ADE 环境 tools->calculator。

进入到计算器界面。

选择 tran 下的 vt。因为我们是在 tran 下仿真的。Vt 表示选取电压,it 表示选择电流。 选择 vt 后,选择原理图中的信号,这里选择的是输入信号,这时候就会在下面的空白框中显示 VT("/net5")。表示选择 net5 的电压,也就是我们的输入信号。选择下面函数中的

frequency, 频率函数。就会看到在 VT("/net5")前多了一个 frequency。点击下面的 Eval 按钮。 就计算出来查看信号的频率。

得到计算出来的是 499.9M。和 500M 有点误差,不过这误差可以忽略。

二、 查看 3db 带宽

放大器中需要查看 3db 带宽,这也可以用计算器计算出来。 还是以上面的 rc 电路为例

输入信号源为正弦信号源,设置 AC 幅度为 1,DC 电压为 0.在 ADE 环境下 AC 仿真,得到输出波形图。

当输出降到输入的 0.69 时的频率就是 3db 带宽。当然也可以从图中得到。还是使用计算器。

打开计算器。

选择 ac->vf,因为是 ac 仿真。选择电路图的输出。得到 VT("/net5")。选择函数中的 bandwidth。这里是看 3db,所以不用更改数据,如果要看其他 db 的,改 db 的值即可。电路图是低通滤波器,这里选择 type 为 low。

点击 ok。在点 Eval。得到

这样就得到了 3db 带宽。

三、得到一些计算表达式的值

通过 dc 扫描,会得到一组数据。但是要对这组数据处理,比如对于这组数据 a 要进行 (a-3) /5 操作。

以上图为例:

通过计算器,将 ac 扫描得到的值为数据读入计算器,即 ac->vf,然后选择电路图中的输出。

写入表达式。图中红色箭头左边的是显示结果的波形,右边是显示结果的表格。

从中,可以得到,计算器的使用步骤。先仿真,得到数据。然后将数据读入到计算器中,使用函数,或者自己构造表达式,得到结果。将结果用波形显示,或者表格显示。

总的来说,计算器是很好用的,可以用来计算很多东西。特别是自带的函数,加以运用 会很容易得到结果。

表格也是很好用的,表格会列出电路扫描得到的各个值。有了这些值,就可以得知电路 在每个扫描点的状态。